ANSWERS TO SELECTED PROBLEMS IN STARR'S General Equilibrium Theory: An Introduction Chapter 2

Selected Problems

Chapter 2, Exercises 2.4, 2.9, 2.14.
2.4. Let $K=[0,1) \cup(1,2] \subset R$. Then $\bar{K}=[0,2]$, a convex set. But K is non-convex since it does not include its midpoint. That is, $1 \notin \mathrm{~K}$.
2.9. Closed subsets of R: $\mathrm{S}=\left\{0,1,{ }^{1}{ }_{2}, 1 / 3, \ldots,{ }^{1} / v, \ldots \mid\right.$ for $\left.v=1,2,3, \ldots\right\}$. S is closed inasmuch as it contains its cluster points.
$\mathrm{T}=[0,1]$, the closed interval between 0 and 1.
Closed subsets of $R^{N}: A=\left\{x=\left(x_{1}, x_{2}, \ldots, x_{N}\right) \mid x_{2}=x_{3}=\ldots=x_{N}=0, x_{1} \in R\right\}$. A is the x_{1} co-ordinate axis. A is a closed set since it includes all its cluster points.
$B=\left\{x\left|x \in R^{N},|x| \leq 10\right\} . B\right.$ is the closed ball of radius 10 , centered at the origin.
2.14. - Show that $A \cap B$ is convex.

Let $\mathrm{x}, \mathrm{y} \in \mathrm{A} \cap \mathrm{B}$. Then $\mathrm{x}, \mathrm{y} \in \mathrm{A}$ and B . Then by convexity of A and B we have that $\alpha x+(1-\alpha) y \in A$ and B. Then $\alpha x+(1-\alpha) y \in A \cap B$.

- Show that $\mathrm{A}+\mathrm{B}$ is convex.
$x, y \in A+B$ means that there are $x^{a}, y^{a} \in A$, and $x^{b}, y^{b} \in B$ so that $x^{a}+x^{b}=x \in A+B$ and $y^{a}+y^{b}=y \in A+B$. Then
$\alpha x+(1-\alpha) y=\alpha x^{a}+\alpha x^{b}+(1-\alpha) y^{a}+(1-\alpha) y^{b}=\alpha x^{a}+(1-\alpha) y^{a}+\alpha x^{b}+(1-\alpha) y^{b}$. But $\alpha x^{a}+(1-\alpha) y^{a} \in A, \quad \alpha x^{b}+(1-\alpha) y^{b} \in B$, by convexity of A and B. So $\alpha x+(1-\alpha) y \in A+B$. - Show that \bar{A} is convex.

Let $\mathrm{x}, \mathrm{y} \in \overline{\mathrm{A}}$. We wish to show that $\alpha \mathrm{x}+(1-\alpha) \mathrm{y} \in \bar{A}$. The only difficulty arises if x or $y \notin A$. Suppose $x \notin A$. But then x is the limit of a sequence $x^{v} \in \bar{A}$. Then the sequence $\alpha x^{v}+(1-\alpha) y \in \bar{A}$ and approaches $\alpha x+(1-\alpha) y$ as its limit, so $\alpha x+(1-\alpha) y \in \bar{A}$.

