ANSWERS TO SELECTED PROBLEMS IN STARR'S General Equilibrium Theory: An Introduction Chapter 2

Selected Problems

Chapter 2, Exercises 2.4, 2.9, 2.14.

2.4. Let $K = [0,1) \cup (1,2] \subset \mathbb{R}$. Then $\overline{K} = [0, 2]$, a convex set. But K is non-convex since it does not include its midpoint. That is, $1 \notin K$.

2.9. Closed subsets of R: $S = \{0, 1, \frac{1}{2}, \frac{1}{3}, ..., \frac{1}{v}, ... | \text{ for } v = 1, 2, 3, ... \}$. S is closed inasmuch as it contains its cluster points.

T = [0, 1], the closed interval between 0 and 1.

Closed subsets of \mathbb{R}^{N} : $A = \{ x = (x_1, x_2, ..., x_N) \mid x_2 = x_3 = ... = x_N = 0, x_1 \in \mathbb{R} \}$. A is the x_1 co-ordinate axis. A is a closed set since it includes all its cluster points.

 $B = \ \{ \ x \ | \ x \in R^{\scriptscriptstyle N} \ , \ |x| \le 10 \ \} \ . \ B \ is \ the \ closed \ ball \ of \ radius \ 10, \ centered \ at \ the \ origin.$

2.14. • Show that $A \cap B$ is convex.

Let x, $y \in A \cap B$. Then x, $y \in A$ and B. Then by convexity of A and B we have that $\alpha x+(1-\alpha)y \in A$ and B. Then $\alpha x+(1-\alpha)y \in A \cap B$.

• Show that A+B is convex.

 $x, y \in A+B$ means that there are $x^a, y^a \in A$, and $x^b, y^b \in B$ so that $x^a + x^b = x \in A+B$ and $y^a + y^b = y \in A+B$. Then

 $\alpha x + (1-\alpha)y = \alpha x^a + \alpha x^b + (1-\alpha)y^a + (1-\alpha)y^b = \alpha x^a + (1-\alpha)y^a + \alpha x^b + (1-\alpha)y^b$. But $\alpha x^a + (1-\alpha)y^a \in A$, $\alpha x^b + (1-\alpha)y^b \in B$, by convexity of A and B. So $\alpha x + (1-\alpha)y \in A+B$. • Show that \overline{A} is convex.

Let x, $y \in \overline{A}$. We wish to show that $\alpha x+(1-\alpha)y \in \overline{A}$. The only difficulty arises if x or $y \notin A$. Suppose $x \notin A$. But then x is the limit of a sequence $x^{\vee} \in \overline{A}$. Then the sequence $\alpha x^{\vee}+(1-\alpha)y \in \overline{A}$ and approaches $\alpha x+(1-\alpha)y$ as its limit, so $\alpha x+(1-\alpha)y \in \overline{A}$.